Thermal-Flow Analysis of a Simple LTD (Low-Temperature-Differential) Heat Engine
نویسندگان
چکیده
A combined thermal and flow analysis was carried out to study the behavior and performance of a simple, commercial LTD (low-temperature-differential) heat engine. Laminar-flow solutions for annulus and channel flows were employed to estimate the viscous drags on the piston and the displacer, and the pressure difference across the displacer. Temperature correction factors were introduced in the thermal analysis to account for the departures from the ideal heat transfer processes. The flow analysis results indicate that the work required to overcome the viscous drags on engine moving parts is very small for engine speeds below 10 RPS (revolutions per second). The work required to move the displacer due to the pressure difference across the displacer is also one-to-two orders of magnitude smaller than the moving-boundary work of the piston for temperature differentials in the neighborhood of 20 ◦C and engine speeds below 10 RPS. A comparison with experimental data reveals large degradations from the ideal heat transfer processes inside the engine.
منابع مشابه
Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine
Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...
متن کاملEffect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching surface
The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...
متن کاملCasson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation
The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...
متن کاملThermo-mechanical high-cycle fatigue analysis of exhaust manifold of turbocharged engine with two-way coupling FSI
NNowadays, car manufactures in order to increasing torque and power with consider to fuel consumption, have swept to production of turbocharged engines. With consider to exhaust gas-temperature rises in boosted engines, recognition of critical locations of exhaust manifold in the worse condition of engine (full load and maximum speed), to prevent fracture of exhaust manifold is very important. ...
متن کاملEffects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime
An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...
متن کامل